Particle Swarm Optimization With Probability Sequence for Global Optimization
نویسندگان
چکیده
منابع مشابه
Particle Swarm Optimization with Reduction for Global Optimization Problems
This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization...
متن کاملAn Improved Probability Particle Swarm Optimization Algorithm
This paper deals with the problem of unconstrained optimization. An improved probability particle swarm optimization algorithm is proposed. Firstly, two normal distributions are used to describe the distributions of particle positions, respectively. One is the normal distribution with the global best position as mean value and the difference between the current fitness and the global best fitne...
متن کاملA Novel Particle Swarm Optimization Algorithm for Global Optimization
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire popu...
متن کاملConstricted Particle Swarm Optimization based Algorithm for Global Optimization
Particle Swarm Optimization (PSO) is a bioinspired meta-heuristic for solving complex global optimization problems. In standard PSO, the particle swarm frequently gets attracted by suboptimal solutions, causing premature convergence of the algorithm and swarm stagnation. Once the particles have been attracted to a local optimum, they continue the search process within a minuscule region of the ...
متن کاملParticle Swarm Optimization with Transition Probability for Timetabling Problems
In this paper, we propose a new algorithm to solve university course timetabling problems using a Particle Swarm Optimization (PSO). PSOs are being increasingly applied to obtain near-optimal solutions to many numerical optimization problems. However, it is also being increasingly realized that PSOs do not solve constraint satisfaction problems as well as other meta-heuristics do. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3002725